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ABSTRACT: A considerable amount of discussion can be found in the forensics literature about the issue of using statistical sampling to obtain
for chemical analyses an appropriate subset of units from a police seizure suspected to contain illicit material. Use of the Bayesian paradigm has been
suggested as the most suitable statistical approach to solving the question of how large a sample needs to be to ensure legally and practically accept-
able purposes. Here, we introduce a hypergeometric sampling model combined with a specific prior distribution for the homogeneity of the seizure,
where a parameter for the analyst’s expectation of homogeneity (a) is included. Our results show how an adaptive approach to sampling can mini-
mize the practical efforts needed in the laboratory analyses, as the model allows the scientist to decide sequentially how to proceed, while maintain-
ing a sufficiently high confidence in the conclusions.
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A common issue in forensic practices is to estimate an adequate
size for a subset of units randomly sampled from a police seizure
suspected to contain illicit material, such as illicit drugs (ecstasy,
lysergic acid diethylamide [LSD], etc). The subset is typically
exposed to laboratory inspection based on chemical analyses to
estimate the presence of illicit material in the individual units, and
conclusions are then drawn about the characteristics of the whole
seizure. It has become widely understood that the Bayesian statisti-
cal paradigm might provide the most suitable approach to solving
the question of how large a sample needs to be taken from the sei-
zure for both legally and practically acceptable purposes (1–3). For
earlier approaches to estimating the sample size, see for example,
(4–7), and for a general discussion on the statistical issues related
to evidence, see (8,9). Aitken (1) considered the problem using a
binomial sampling model approximation, which boils down to the
question of choosing an appropriate beta prior distribution to repre-
sent the a priori expectation of the seizure properties. As the sam-
pling is always in practice performed without replacement from a
finite population of units, the correct sampling model equals the
hypergeometric distribution, which was used by Coulson et al. (3)
to estimate the sample size. Their formulation of the problem
included the a priori element in terms of a set of hypotheses corre-
sponding to ratios of the number of units containing illicit material

to the number of those lacking it. Given that an analyst specifies
his ⁄ her a priori beliefs about the seizure properties, both
approaches can be readily applied to estimate a suitable sample size
for the units to be analyzed. The earlier statistical approaches to
estimating the sample size as specified previously are concerned
either with the exact number of units in the seizure containing illi-
cit material (or their fraction), or with a statement in terms of a
lower boundary for the probability that the seizure contains at least
a given fraction of units with illicit material. However, here we for-
mulate the problem instead in terms of sequential hypotheses. The
reason for approaching the sample size estimation problem in this
manner is that probabilistic characterization of both the available
expert knowledge and sampling uncertainty can then be coherently
united using Bayesian statistics. Without clearly defined hypotheses
and their prior probabilities, it is not possible to use the rules of
probability calculus to derive strictly normative decision tools for
estimating the sample size. The first hypothesis represents the claim
that the seizure is homogeneous, that is, all units contain illicit
material. We show that a prior probability distribution can be read-
ily derived for such a model using formal arguments in Bayesian
statistical theory. Under such a prior, an analyst can specify any
suitable lower bound on level of confidence or degree of belief in
the claim of homogeneity of the seizure, which then enables deriva-
tion of an expression for the sample size needed to reach the bound
if the sample proves to contain only units with illicit material.
However, if the first hypothesis is rejected on the basis of the sam-
ple actually drawn, that is, at least a single unit lacks illicit mate-
rial, then a second hypothesis can be formulated. Results from the
chemical analyses performed on the sampled subset of the seizure
provide information from which a predictive probability distribution
can be derived for any quantity of interest for the whole seizure.
Typically, the second hypothesis would correspond to a claim that
the seizure contains at least a certain number of units with illicit
material, to be further utilized by prosecutors in a legal process. If
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the claim is already associated with a sufficiently high predictive
probability from the prosecutors’ perspective, no further sampling
would be necessary. On the other hand, if the sample information
is insufficient to reach the conclusive probability for such a claim,
the predictive probability distribution can be utilized to derive an
expression for the expected gain obtained by sampling and analyz-
ing any particular number of further units from the seizure. Our
formulation thus gives raise to an adaptive sampling strategy where
savings in the practical inspection efforts can be reached.

First-Stage Sample

Usually, in the situation where a dichotomous property of units
in a finite population is investigated, the correct sampling model
equals the hypergeometric distribution. Unfortunately, this approach
involves some complications when used for forensic purposes
unless special care is taken when formulating the prior probability
distribution for the unknowns in the model (see Appendix, Sec-
tion 1.1). Here, we show that choosing initial sample size using a
hypothesis-driven parameterization supplies us with the required
results. We formulate the initial hypothesis as a dichotomous state-
ment about whether the seizure is homogeneous or not, that is,
whether it contains only positive units. The theoretical arguments
given in the study by Bernardo and Smith (2) show how a specific
prior probability distribution can be derived for the hypothesis that
claims homogeneity of the seizure. Here, we modify their approach
slightly to arrive at a prior probability distribution that can incorpo-
rate analyst’s opinion regarding how likely the homogeneity of the
seizure is a priori (this quantity is denoted by a, see Appendix Sec-
tion 1.2 for mathematical details). Let N denote the total size of the
seizure and n the size of a random sample without replacement
from the population of N units. By Eq. (15) in the Appendix, we
obtain the posterior probability of homogeneity, given any particu-
lar sample, and thus, a sufficiently large sample size n for a given
pair ðN; aÞ is obtained by choosing the smallest value which yields
at least as high posterior probability as a preestablished threshold
b, say 0.95. In Table 1, derived sample sizes are given considering
three different values of a (0.75, 0.90, and 0.95) and population
size N taking values in the set (10, 10,000). The obtained sample
sizes are the minimum values of n that ensure a threshold value of
0.95. More specifically, consider, for example N = 50 and
a = 0.75, where a reflects the expert’s expectation about the homo-
geneity of the seizure. Then, the sample size required to reach the
threshold level 0.95 is n = 5. In a typical situation encountered in a
forensics laboratory, all sampled units from a seizure are positive
(contain illicit material), and thus, no further sampling is necessary
based on the hypergeometric model derived in the Appendix. How-
ever, when at least one unit out of n is negative, then we have to
estimate the lower bound (denoted with uq) of the number of units
containing illicit material and compare it with the number M of
positive units that the prosecutors wish to claim to exist in the sei-
zure. If uq ‡ M, the sample information indicates that no further
sampling is necessary to reach sufficient level of probability in the
conclusion that the seizure contains at least M units with illicit
material, as uq can be reported for legal purposes. However, if

uq < M, then further sampling may be needed if the prosecutors
prefer to claim a high fraction of positive units in the seizure. The
mathematical details are fully explained in Section 1.3 of the
Appendix. As an example of this first-stage sample, let us consider
an initial seizure of N = 5000, a fixed preestimated threshold
b = 0.95 and let us set the analyst’s expectation a to 0.75. Accord-
ing to Eq. (15) in the Appendix, a sample of size n = 6 is enough
to reach the desired threshold. If in our sample of six units only
four contain illicit material, then the first hypothesis of homogene-
ity of the initial seizure must be rejected. Further, according to
Eqs (17) and (18) in the Appendix, a lower bound, denoted uq, of
the number of units containing illicit material in the initial seizure,
can be calculated. In this example, we obtain uq = 1707. Conse-
quently, if the prosecutor wishes to claim a higher fraction of posi-
tive units, then it is necessary to proceed with a second-stage
sample from the seizure.

Second-Stage Sample

Let h denote the total number of units with illicit material in the
remainder of the seizure N-n after the first-stage sample. Presume
now that n2 additional samples would be taken from the seizure
from which the n units were earlier removed. Assuming that x2

units from the second sample contain illicit material, Eq. (19) in
the Appendix gives the likelihood of obtaining x2 positive units in
the future sample of n2 units conditional on any particular value of
h. The expected gain in terms of claiming seizure properties from
n2 future samples can now be expressed in terms of the predictive
expectation of the lower bound Uq, in which the uncertainty about
both x2 and h is appropriately taken into account (Eq. [22] in the
Appendix). This quantity reveals the conditional expected value for
how large a number of units with illicit material could be claimed
to be present in the seizure with probability q if n2 additional sam-
ples were taken. The conditional expectation captures the informa-
tion present in the initial sample of n units and transforms that into
a prediction for future samples. In Table 2, we illustrate the partic-
ular value of information gain arising from specific combinations
of the parameters in the sampling design. As we did already in the
previous example, we consider an initial sample size of six units
and assume that only four of them contain illicit drug. The table
presents results for the combination of three levels of a priori
uncertainty (0.9, 0.95, 0.99) with three different levels of initial
population size (1000, 5000, and 10,000). The expected bounds for
the number of illicit units in the population are derived for a

TABLE 1—Sample size required, for every N in (10, 10,000) to ensure a
threshold value of 0.95.

Alpha Sample Size

0.75 6
0.9 2
0.95 1

TABLE 2—Information gain obtained with initial sample size n = 6 and
assuming x = 4, when considering three different seizure sizes and three

levels of a priori uncertainty.

N

1000 5000 10,000

0.9
n = 6 405 2020 4039
n2 = 2 430 2148 4295
n2 = 3 440 2198 4395

0.95
n = 6 342 1707 3413
n2 = 2 374 1867 3733
n2 = 3 386 1929 3858
n = 6 237 1183 2364

0.99
n2 = 2 276 1380 2759
n2 = 3 292 1459 2918
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second-stage samples consisting of two and three units, respec-
tively. Hence, by drawing from an initial seizure of 5000 units, a
sample of size 6, four of which contain illicit drug, allows us to
claim that with a probability of 0.95, there are at least 1707 units
of drugs in the seizure. If this quantity is not sufficient under the
legal perspective, then sampling three more units will yield the
expected claim that with a probability of 0.95 there are at least
1929 units of drug in the initial population. The analytically explicit
characteristics of the predictive model allow one to develop the
sampling strategy into a fully adaptive form. Given the fact that the
chemical analyses of samples from multiple seizures are typically
performed at the same time using a number of mass spectrometers,
it would be a practical strategy to analyze the second-stage samples
sequentially. This would allow the decision as to whether to ana-
lyze any additional samples to depend on a revision of the predic-
tive probabilities in light of the results for the initially analyzed
samples among the total of n2 second-stage samples. As the bounds
derived previously are based on the expectation of the gain from
future data, they can be sequentially revised after each test result
(positive or negative) arrives from the chemical analysis. This is
performed by an update of the posterior distribution (Eq. [17]),
which in turn implies a change in the predictive distribution of the
future samples. A sought level of claim M may thus be obtained
earlier, that is, with fewer additional samples, than anticipated by
the expectation of the initial predictive distribution obtained from
the first-stage sample.

Discussion

The drug sampling problem is a daily issue in most forensic
laboratories, and estimating the optimal sample size is fundamen-
tal to ensure a legally acceptable procedure. As usual in the foren-
sic field, there are two opposite needs in the context: producing
reliable results without spending too much money and time. A

well-trained forensic scientist usually needs just to have a look at
the seizure to know what he ⁄ she is dealing with. It is important
to utilize such expertise in the sampling process to save resources,
while still being at the same time conservative. Our method,
which is purely Bayesian, enables this and jointly with an adap-
tive sampling approach, allows the scientist ⁄ expert to decide
sequentially how to proceed. The first-stage sample size is esti-
mated on the basis of a hypergeometric model but using a param-
eterization where the scientist’s opinion based on experience,
denoted by a, is considered. If all the sampled units are positive,
no further sampling is required to draw conclusions about the
content of the seizure and Eq. (15) in the Appendix will provide
the posterior probability of seizure homogeneity. If some of the
sampled units are not positive, then further sampling may be
needed if prosecutors wish to claim a particular amount M of
positive material in the seizure. More specifically, when the num-
ber of positive test results x is smaller than the initial sample size
n, Eq. (17) in the Appendix provides a new posterior probability
from which it is possible to calculate the lower bound uq (defined
formally in Eq. [18]). If uq ‡ M, the sampling procedure can be
terminated as already shown earlier. If, on the other hand,
uq < M, then additional sample is required and the expected gain
obtained by sampling n2 units from the population can be
assessed. In practice, a forensic expert ⁄ scientist can estimate the
number of additional units to be sampled to reach the required
level M, and to use resources optimally, analyze sequentially a
single unit at a time. Thus, after the first additional unit, denoted
by z1, has been sampled and analyzed, the posterior probability
pðhjx; z1Þ can be revised. Then, if Uq(z1) ‡ M, the sampling pro-
cedure terminates and no more units are needed. Otherwise, fur-
ther units must be analyzed, and the procedure can be repeated in
an equivalent manner. This procedure is schematically represented
in Fig. 1. Our adaptive sampling model provides a resource-saving
approach while still being simultaneously legally sound, because

FIG. 1—Adaptive drug sampling procedure flow chart.
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even for high values of the expert’s prior expectation a, a com-
pletely innocent suspect will not be harmed because all findings
will then be negative. It is worth noticing that for large seizures,
a binomial sampling model based on the assumption of infinite
population size would provide a feasible approximation to the
hypergeometric model. However, because the approach derived
here is generally applicable to any seizure size without numerical
complications, there is no need to use an approximate likelihood
in place of the correct sampling model.
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Appendix

1. Estimating Sample Sizes Using Hypergeometric Distribution

1.1 A Hypergeometric Model—In the situation where a
dichotomous property of units in a finite population is investi-
gated using random sampling of units without replacement, the
correct sampling model equals the hypergeometric distribution.
The hypergeometric model can be defined as

pðxjhÞ ¼

h
x

� �
N � h
n� x

� �

N
n

� � ð1Þ

where N is the total size of the population (here seizure size), h
is the number of units possessing a property of interest (here,
presence of illicit material in the unit), and x is the number of
units possessing the property of interest in a randomly chosen
sample of size n from the population. The above probability
stems from a combinatorial evaluation of the possible configu-
rations of a random sample without replacement. Subsequently,
we refer to x and n ) x as the number of positive and negative
units, respectively, on the basis of results from the chemical

analyses, the sample is subjected to. Assume now that x = n,
then, given the sample information it is known that n £ h £ N,
and the posterior distribution of h can be written as:

pðhjxÞ ¼ pðxjhÞpðhÞPN
h¼n pðxjh ¼ rÞpðhÞ

ð2Þ

where pðh ¼ rÞ; r ¼ 0; . . . ; N; specifies the prior probabilities
for h, representing the analyst’s uncertainty about the number of
units in the seizure containing illicit material. The general infer-
ence procedure for the hypergeometric model based on a uni-
form prior distribution discussed in Bernardo and Smith (2),
that is, pðh ¼ rÞ ¼ 1=ðN þ 1Þ; r ¼ 0; . . . ; N; is particularly illu-
minating in the present context. Assuming all n tested units are
positive, the posterior probability of homogeneity of the seizure
h = N can be written as

pðh ¼ Njx ¼ nÞ ¼
pðx ¼ njh ¼ NÞ 1

Nþ1PN
r¼n pðx ¼ njh ¼ rÞ 1

Nþ1

¼

N

n

� �

PN
r¼n

r

n

� �
N � r

n� n

� �
ð3Þ

Then, by the following general equality

XN

r¼0

r
l

� �
N � r

m

� �
¼ N þ 1

lþ mþ 1

� �
ð4Þ

where l + m = n is the sample size for the hypergeometric
model and l stands for the number of sampled positive units,

and as
r
l

� �
¼ 0; r<l, the posterior probability simplifies to:

pðh ¼ Njx ¼ nÞ ¼

N

n

� �

N þ 1

nþ 1

� �

¼ N!

n!ðN � nÞ!
ðnþ 1Þ!ðN þ 1� n� 1Þ!

ðN þ 1Þ!

¼ nþ 1
N þ 1

ð5Þ

Thus, use of the uniform prior would imply that conclusive prob-
abilities for the seizure homogeneity could be obtained only from
very large samples, which is obviously not desirable. The actual
reason for this behavior of the inferences is that the homogeneity is
assigned the smaller probability a priori, the larger the size of the
total population.

1.2 Choosing Initial Sample Size Using a Hypothesis-Driven
Parameterization

We formulate the initial hypothesis as a dichotomous statement
about whether the seizure is homogeneous or not, that is, whether
it contains only positive units. The theoretical arguments given in
Bernardo and Smith (2) show how a specific prior probability dis-
tribution can be derived for the hypothesis that claims homogeneity
of the seizure. Here, we modify their approach slightly to arrive at
a prior probability distribution that can incorporate analyst’s opin-
ion regarding how likely the homogeneity of the seizure is a
priori.
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Our prior distribution is derived using a re-parameterization of
the hypergeometric distribution. Corresponding to the first hypothe-
sis, we are primarily interested in the dichotomous parameter:

/ ¼ 1; if h ¼ N
0; if h 6¼ N

�
ð6Þ

Define now h as ð/; kÞ, such that

k ¼ 1; if h ¼ N
h; if h 6¼ N

�
ð7Þ

and define the following prior distribution for the new
parameters:

pð/ ¼ 0Þ ¼ 1� a ð8Þ

pð/ ¼ 1Þ ¼ a ð9Þ

pðk ¼ 1j/ ¼ 1Þ ¼ 1 ð10Þ

pðk ¼ rj/ ¼ 0Þ ¼ 1
N
; r ¼ 0; 1; . . . ; N � 1 ð11Þ

The probability a represents an analyst’s expectation of the
homogeneity of the seizure. The above construct implies the fol-
lowing prior for h:

pðhÞ ¼ a; if h ¼ N
1�a

N ; if h 6¼ N

�
ð12Þ

The reference posterior probability of seizure homogeneity then
equals:

pðh ¼ Njx ¼ nÞ ¼
a

N
n

� �

ð1�aÞ
N

N þ 1
nþ 1

� �
� N

n

� �� �
þ a

N
n

� � ð13Þ

By utilizing the equality

N þ 1
nþ 1

� �
� N

n

� �
¼ N

nþ 1

� �
ð14Þ

we obtain the following expression for the posterior probability:

pðh ¼ Njx ¼ nÞ ¼
a

N!

n!ðN � nÞ!
ð1� aÞN!

Nðnþ 1Þ!ðN � n� 1Þ! þ a
N!

n!ðN � nÞ!

ð15Þ

¼
a

N � n
a

N � n
þ 1� a

Nðnþ 1Þ

ð16Þ

It can be shown that when n grows, p(h = N|x = n) fi 1, which
is a desirable property of the inference process.

1.3 Choosing the Number of Eventual Additional Samples

In a typical situation encountered in a forensics laboratory, all
sampled units from a seizure are positive, and thus, no further sam-
pling is necessary based on the hypergeometric formulation derived
earlier. However, when at least one unit out of n is negative, fur-
ther sampling may be needed if the prosecutors prefer to claim a
high fraction of positive units in the seizure. In probabilistic terms,
when x < n, the posterior probability of the homogeneity hypothesis
h = N becomes zero. Correspondingly, the posterior probabilities of
other values of h become in general modified and can be written
as:

pðhjxÞ¼ ¼ pðxjhÞpðhÞPN�ðn�xÞ
r¼x pðxjhÞpðhÞ

¼

h

x

� �
N�h

n�x

� �

PN�ðn�xÞ
r¼x

h

x

� �
N�h

n�x

� �; r¼x;:::;N�ðn�xÞ

¼0;otherwise

8>>>>><
>>>>>:

ð17Þ

Any question about h can then be readily answered in terms of
these probabilities. In particular, let M < N be the number of
units containing illicit material that the prosecutors wish to
claim to exist in the seizure with a high probability, such that it
can be utilized as evidence in a legal process. Boundary of the
upper tail area of the posterior distribution (Eq. [17]), say uq,
defines a useful lower bound on the number of units containing
illicit material on the basis of the sample of n units with x posi-
tive among them. For any probability q2ð0;1Þ, the boundary
can be defined as

uq ¼ arg max
r

XN�ðn�xÞ

h¼r

pðhjxÞ � q; q 2 ð0; 1Þ ð18Þ

Typically, one might use a large value of q, such as 0.99.
If uq ‡ M, the sample information indicates that no further sam-

pling is necessary to reach sufficient level of probability in the con-
clusion that the seizure contains at least M units with illicit
material, as uq can be reported for legal purposes. However, if
uq < M, an analyst could assess the gain expected to be obtained
from further sampling of units from the seizure to be analyzed.
Such gains can be calculated using the predictive distribution of the
future samples based on Eq. (17). Presume that n2 additional sam-
ples would be taken from the seizure from which the n units were
earlier removed. The posterior distribution of h for the modified
population is then obtained by the simple one-to-one mapping of
the earlier elements x; . . . ; N � ðn� xÞ into 0; . . . ; N � n, result-
ing from removal of the initial sample. Denote this posterior by p*

(h | x). Conditional on any particular value of h, the likelihood of
obtaining x2 positive units in the future sample of n2 units equals

pðx2jhÞ ¼

h
x2

� �
N � n� h

n2 � x2

� �

N � n
n2

� � ; x2 ¼ 0; . . . ; n2 ð19Þ

If x2 positive units were actually obtained, the corresponding
predictive bound for the total original seizure becomes
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Uqðx2Þ ¼ xþ arg max
r

XN�n

h¼x2

pðhjx2Þ � q; q 2 ð0; 1Þ ð20Þ

where the posterior p(h | x2) equals

pðhjx2Þ ¼

h

x2

� �
N � n� h

n2 � x2

� �

N � n

n2

� � p�ðhjxÞ

PN�n
h¼0

h

x2

� �
N � n� h

n2 � x2

� �

N � n

n2

� � p�ðhjxÞ

¼

h

x2

� �
N � n� h

n2 � x2

� �
p�ðhjxÞ

PN�n
h¼x2

h

x2

� �
N � n� h

n2 � x2

� �
p�ðhjxÞ

ð21Þ

Notice that the predictive bound Uq (x2) is a random variable as
it depends on the yet unobserved future sample. The expected gain

in terms of claiming seizure properties from n2 future samples can
now be expressed in terms of the predictive expectation of the
lower bound, in which the uncertainty about the x2 and h is appro-
priately taken into account:

Uq ¼
XN�n

h¼0

Xn2

x2¼0

Uqðx2Þpðx2jhÞp�ðhjxÞ ð22Þ

This quantity reveals the conditional expected value for how
large a number of units with illicit material could be claimed to be
present in the seizure with probability q if n2 additional samples
were taken. The conditional expectation captures the information
present in the initial sample of n units and transforms that into a
prediction for future samples.
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